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Final Report: PLASTIC DEFORMATION OF GRANULAR MATERIALS

E. BRUCE PITMAN*

April 1, 1988 - March 31, 1989

INTRODUCTION

The deformation of granular materials occurs in a variety of applications: soil dynamics;
avalanch flows: grain flow in bins. Our goal in this project is to develop a more complete
understanding of the mechanics of granular flow. The project consists of two distinct
but rclated phi. es. One phase is a study of the mathematical structure of constitutive
relations used to model the granular medium. The research here is primarily concerned
with the stability and well posedness of the evolution equations governing flow. Most of our
efforts have concentrated on the Critical State Theory of Soil Mechanics, a mathematically
attractive theory which has some success in modeling soil deformations. In particular, the
Critical State Theory is reasonably successful at modelling the deformation of so called
"Cam clay", a type of clay tested by the Cambridge soil mechanics group in the late
1950's. Critical State Theory applied to "Cam clay" is, therefore, a useful model for
soil dynamics. Complementing this theoretical study is a computational phase, consisting
of numerical simulation of cannonical granular flows. In Section 1 we briely review the
equations governing granular flow; this section includes very preliminary ideas regarding a
fully non-linear constitutive relation. In Section 2 we describe the results on the stability
of flow. In Section 3 we describe work on the corrputational pha._& uf this project. A
review of many of these issues appears in [8].

§1. EQUATIONS OF MOTION

(a) Critical State Theory. The fundanental equations governing the deformation of a
continuum are the balance laws of mass and momentum:

(1.1) dtp + pV. v =0

(1.2) ,,d,' + V. T b

Here p is the density of the materli:, at t th point x = (xI, x 2, T3 ) and time t, t = (l, v2. r3)
is the velocity, and T is the sv',:i.,m" stress tensor. Body forces are represented by b.
and dt = 9t + v -V is the conyc,':'.,. ,lorivitive. We employ the summation convention
throughout this report.

Equations 1.1 - 1.2 represent f, : , .. :;ins for the ten unknowns p. t,. T,,. In ord,_ :,
close the system. we need to - ... . it uive laws relating the density and velocities
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to the stresses. In [9,11], Pitman and Schaeffer employed the theory of Critical State Soil
Mechanics [3,12] to provide these relations. If we regard compressive stresses as positive
and denote the strain-rate tensor as V !-(aQvi + 9,vj), these constitutive laws may be
written:

(1.3) O(T,p) = 0

(1.4) Tj MV

Equation 1.3 is the Plastic Yield Condition and Equation 1.4 is the Associated Flow Rule.
In particular, Equation 1.4 states that the normal to the Yield Surface € = 0 is proportional
to the strain-rate tensor. Note, however, that the constant of proportionality, A, is not
specified a priori (as in elasticity) but must be determined as part of the solution procedure.
Different versions of the theory may be examined by altering the function 0. It is usually
required that 0 be a convex function of T and monotone in p. This monotonicity generates
a nested sequence of yield surfaces in stress space; such a picture lies at the heart of the
Critical State Theory. (Remark: For some materials like dry sand. 0 may be taken to have
the form

o(T, p) = p(tr(T), dev(T)I) - pi.

Here. tr(T) denotes the trace of T; Idet,(T)I is the Euclidean norm of the deviator of T.
where

dev(T) -- T - tr(T)I;
3

and 3 is a small parameter which measures compressibility, typically ,3 10- 1 - 10-2.)
The Associated Flow Rule 1.4 is not universally accepted in plasticity research. espe-

cially metal plasticity [2]; associative flow rules were introduced in plasticity theory by
analogy with work in elasticity. See subsection (b) for a different approach. Standard
non-Associative theories postulate a "flow potential" ¢ and the flow rule 0,* = pl WeaT, -I .W
consider only the Associative theory here.

We claim that the system of equations 1.1 - 1.4 is closed. There are now 11 unknowns.
/a being added to the previous list: there are also 11 equations with which to determine
these variables. However, Equations 1.3-1.4 are not evolution equations, and the mixed
Jifferential/algebraic character n;k,- the system is difficult to analyze. Considerable sim-
plification results if we bolve 1.3 1 ' for T and M as functions of V and p and write

(1.5) T T(VIp).

We remark ,ht :- Ec-....n ....-. A .. 'u<i.U"ed as a function of '. is homogeneous
of degree zero: this homogeneity . .... ,cteristic of a rate independent theory.

Before finishing this section. w , :i , -,ome terminology which shall be used subse-
quently. Let o, denote the eigerv,:>:, .f the strain-rate tensor V. By fiily threc dirMen-
.4tonal flow we mean flows for which , - 0 for i = 1.2.3. Two dimensional flow. then.
means either flows for which one of the f, 0 or flow in only two space dimensions xi. x,.
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(b) Alternative Constitutive Relations.
The Critical State theory predicts the initial deformation of clays and soils reasonably

well. It has difficulties, however, with cyclic loading paths and with sandy materials. In
addition, when the Critical State theory predicts ill posedness there is no mechanism in
the theory which allows for recovery. (We skirt this difficulty by adding kinetic theory
terms: see Section 3). This defect is shared by most standard deformation theory models.
Preliminary work has begun to investigate a class of "Yield-Vertex" theories of the type
introduced by Christoffersen and Hutchinson [2] for polycrystalline metals.

The fundamental relation in the Yield-Vertex models is a fully non-linear stress strain-
rate relation of the form:

(1.6) =

Here. t denotes the Jauman, or co-rotating, time derivitive of the stress T. For a rate-
independent theory, T must be homogeneous of degree 1 in T; symmetry conditions place
other constraints on the form of (1.6). Modelling is required in order to correctly account
for proportional and non-proportional loading and for unloading in granular materials.

To summarize the work to date. Schaeffer and Shearer have begun an analysis of the
structure of the Yield-Vertex theory. In state space, the non-hyperbolic region appears to
be of finite extent: it is possible for the linearized equations to become ill posed, but for
the system to remain non-linearly stable. Pitman has performed numerical tests on model
problems in order to gain an understanding of the dynamics predicted by the theory. A
full investigation of the theory is planned.

§2. INSTABILITY

We may substitute Equation 1.5 into 1.1-1.2 to obtain a system of four time dependent
partial differential equations in the variables p, vl, t'2, v 3 given by:

(2.1) dtp+ pacgV, = 0

(2.2) pdtv1 + (-- )ap - (4 j a)Q vt = 0.

Here we have dropped body forces from 2 2. Equations 2.1-2.2 formally resemble the
Navier-Stokes equations for a viscous compressible fluid. However. this apparent similarity
is illusary. The primary difference between the fluid equations and the system above is in
the nature of the viscous dissipaticr- term 2T. In the Navier-Stokes system. the symbol
matrix associated to this dissipatini is negative-definite; in Equations 2.1-2.2, the symbol
is only scmi-definite. The non-d, finiteness of this symbol is the ori~i'± uf rrmnv , o he
,rfl;nn.: ; ,-,'C7 ure_ in granular Po ,A

Schaeffer and Pitman [9,11j ,tui:.ed the linear well posedness of Equations 2.1-2.2.
In particu'ar. they found that fully thre dimensional flows are well posed. However two
dimensional flows may be ill po'f-ed wiih a growth rate of O(J1j). where c is the Fourier
variable dual to xr. Our studies in this phase of the project have examined the stability of

the Critical State equations [10,13]. In this section we summarize those results.
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For many typical granular flows, there exist two well separated time scales [9]. It is
possible to exploit these separate scales and incorporate into our anaiysis the effects of
terms not included in [9,111. To this end, define a new time t = f t and a similarly scaled
velocity iT = 1zv. Substitute into Equations 2.1-2.2 and recall the homogeneity of T(V.p)
to find (dropping the tilde)

(2.3) atP + Dj(pt,) = 0

(2.4) f2pdtv, + (T p) - ( -. a) kvl = 0.

Now make the quasi-dynamic approzimation by setting e = 0. Linearize the equations

about a steady, homogeneous solution Po, vo. In the linearization, four terms arise from
the derivitive aQ(pt'j); by appropriate change of coordinate systems we can drop all of

these terms except pooiri . See [13] for details. We derive, then. a system of one evolution

equation for p coupled to three apparently elliptic equations for the vi:

(2.3") 1tp + pO ) = 0

(2.4 ,)p P-" I )a)P a8Th (, =0)020ktl=0.

Consider exponential solutions of the form

(2.5) Ff =erp(i,(X, ) +t ]

where (x, ) = . Substituting 2.5 into 2.3*-2.4*, we derive a generalized eigenvalue

problem for A:

(2.6) S( C) 0

Here the principal part of S( ) has the block structure

(2.7) (0 )T('2_.7 -(I lc) Q( )

where T denotes the transpose of thi, colurm vector ". Perforrming a similarity transfor-

mation to eliminate complex entri ,,. f, r takes the form

(2.8) Q) = Po( OT,) K

4 p
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and Q is given by

(2.9) Qii(W = A ) j6

We call the Equations 2.1-2.2 (linearly) stable if the real part of A is negative: Re A( ) < 0.
Our first results are in two space dimensions and relate the growth of the generalized

eigenvalue A to the ellipticity of the steady state equations associated with 2.3*-2.4*

(2.10) poOjV, = 0

__~ O T,
(2.11) ( ) p- (.)o k&,I = 0

Call 2.10-2.11 elliptic if detS( ) - 0 for all nonzero E R2 . Roughly speaking, the
theorem below states that Equations 2.3-2.4 become unstable when 2.10-2.11 change type
from elliptic to hyperbolic.

THEOREM 2.1. In two dimensions, Equations 2.3-2.4 are stable if and only if (i) Equations
2.10-2.11 are elliptic; and (ii) both eigenvalues of the stress tensor T are non-negative.

(Remark: Shearer and Schaeffer [14] have shown that the results of this theorem remain
true for the full system 2.1-2.2.)

One implication of this theorem is that Equations 2.3-2.4 may be unstable even when
the stresses are on the consolidation side of the yield locus (i.e. stress states for which
tr(V) > 0) [9]. This statement contradicts a widely held view that deformation is stable on
the consolidation side of the yield locus and unstable on the expansion side (i.e. tr(V) < 0):
the results of [9] show that the Critical State (i.e. tr(V) = 0) is the boundary between
wfell pose ' and ill posed behavior. A second consequence of the theorem is that all Fourier
modes along the specific unstable direction lose stability simultaneously. Which specific
mode eventually dominates growth (in the linear regime) depends on initial and boundary
conditions; this suggests extreme sensitivity of experiments to imperfections in laboratory
protocol.

The analogue of Theorem 2.1 holds in three dimensions, but the geometric interpretation
is more complicated '101. In particular, when the steady state equations lose ellipticitv
they do not become hyperbolic: rather they are of mixed type. Because of the complicated
geometry of three dimensional flow. ,IACSY.MA is being employed to perform the algebra
of the problem.

§3. NUMERICAL SIMULATIONS

Preliminary efforts at numerichlv integrating Equations 2.1-2.2 were reported in the
original proposal. Here we describ, ,ur current work on this phase of the project.

Consider the following scenario sug-qested by Theorem 2.1 for the development of shear
bands. Beginning with a homogeneous staide flow, material consolidates upon deformation.
eventually reaching the instability locus. Subsequent deformation remains smooth, but it
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is no longer homogeneous and local imperfections grow in time. At some point in the
sample, an imperfection ultimately becomes ill posed as it reaches the Critical State locus.
Such a point could act as the seed of a velocity discontinuity which then expands into a
shear band. Numerical simulations should be able to confirm this conjectured route to
shear band formation, but the ill posedness of two dimensional deformations precludes the
simple intergration of Equations 2. -2.2. We follow a suggestion of Jackson and regularize
the system.

Let us elaborate. Near a shear band, there is large momentum transfer over distances
on the order of a few particle diameters. Jenkins [41, Savage [53, and colleagues have
developed a theory for granular flow at very high shear rates based on an extension of
standard kinetic theory to slightly inelastic particles. Incorporating the Enskog dense gas
correction, the granular continuum equations are essentially the Navier-Stokes equations
for a compressible, heat conducting fluid. The "heat" is not molecular energy. but the
so-called "granular temperature" measuring a particle's deviation from the mean motion
of its neighbors. There is one non-classical term in the theory, a heat sink which represents
the energy loss due to inelastic collisions. Let the stress tensor derived from this kinetic
theory be Tk, and denote the stress tensor of the Critical State theory as T. Jackson [6
considers a system consisting of Equations 1.1-1.2 and the energy equation of the kinetic
theory, with the total stress being the sum

(3.1) T = Tf + Tk;

76" also shows how to derive appropriate boundary conditions for flow.
The primary consequence of the addition of these kinetic stresses is to add an overall

regularization to the system 2.1-2.2. In unpublished notes, Schaeffer and Pitman demon-
strate that the system 1.1-1.2, 3.1 is well posed. However, near unstable and ill posed
states the system possesses only a small amount of damping of very high frequency Fourier
components. For moderate wave numbers near these states there is a competition between
the growth of the friction terms and the damping of the kinetic terms.

In order to numerically solve the equations without extreme time-step limitations and
to adequately account for the potential growth of Fourier modes as outlined above, we use
an implicit Beam- Warming type scheme [1] to integrate the equations. Beam-Warming
allows for extension to fully multi-dimensional computations. The hyperbolic terms are
treated seperately from the parabolic-like terms. Following Harten and Yee [15] the hy-
perbolic terms are differenced in -' (r: a way as to (try to) preserve the Total Variation
Diminishing character of such tr::.- Parabolic-like terms are centered differenced. and
the entire scheme is constructed :n -:a' form. The resulting set of difference equations
involve block-tridiagonal matrix ::.. ,-. 'i. Such schemes have been successfully applied to
aerodynamic calculations.

Our first numerical experim,':.' :..Shod to quasi-one-dimensional flow in a hopper.
See the attached figure. where v. •. the velocity, as a function of position. at various
times. The geometry of this p: I : . -. ::,ilar to that for a spherically expanding wave
passing through the ground. and .. : ::. formulat ion is simpler in the hopper problem.
In the simulation. we consider i:i:':;Iv -,. tv flow; at time t = 0, we suddenly incri-ased
the flow rate at the exit. We have e'xamix,,.#d the transient behavior as flow settles into a

6



new quiescent steady-state regime. Velocity waves propagate quickly through the material
and equilibrate rapidly; the solid line in the figure is the steady state, attained after about
10 seconds. Note the overshoot of the velocity profiles. Density variations remain active
for an extended period of time and Stresses become negative during flow, signaling tensile

loads. In many granular flow simulations, tensile stresses lead to catastrophic numerical
instabilities: the visco-plastic formulation (3.1) allows us to continue computations through
the tensile region.
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